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What are the issues arising in CER 
of newly marketed drugs 

Efficacy
(Can it work?)

Effectiveness*
(Does it work in 
routine care?)

Placebo 
comparison
(or usual care)

Most RCTs 
for drug 
approval

 Issues:
 Non-randomized designs: achieving balance in between trt grps
 Achieving robust study estimates
 Dealing with shifts in use patterns over time 3

Active 
comparison
(head-to-head)

Goal of 
CER

Let’s focus first on follow-on medications

They may have some but limited improvement in 
effectiveness and/or safety 

Some benefits materialize only in patient subgroups 
They are marketed as suchThey are marketed as such
As least one if not many alternative drugs are 

available to treat the labeled indication (e.g. HTN)
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Patient-level issues

Patients switch from current treatment to new 
treatment
 Because of perceived treatment failure
 Because of perceived adverse outcomesBecause of perceived adverse outcomes

As time moves on the patient population receiving 
the new drug expands and so does the indication

On-label indication expansion is more often covered 
by insurance than off-label use
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Physician-level issues

Early adopters of new technologies
 Not an analytic problem if this is a random character trait
 But they may also be those treating sicker patients
 Or providing better/worse care in generalOr providing better/worse care in general

Soft on patient demands
 Triggered by direct-to-consumer marketing
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Fig.: Explained variation in treatment choice 
over time
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System-level issues

Medication price: out-of-pocket cost
Formulary positioning (several months lag time)
Prior authorization (particularly in early months)
Step-up care requirements
Treatment guidelines (longer lag time)
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Special issues with first of class
medications

Lack of suitable comparison group
 Compare to usual care?
 Is there anybody left who is not treated with new drug?
 If not should we use historical controls?If not, should we use historical controls?
 Time trend analysis, using time of marketing as IV for an 

IV analysis?
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Other issues that come to mind

Lack of statistical power because of few users 
shortly after marketing

 In a cumulative evidence generation system*, when 
is enough evidence established?is enough evidence established?
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* Think of FDA’s Sentinel System

Newly marketed medications
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Schneeweiss PDS 2010

A basic cohort design in longitudinal healthcare 
claims data

Time

Fixed covariate 
assessment period

Follow-up period
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Time

Initiation of exposure with study 
and comparison drugs and start 
of follow-up

Schneeweiss PDS 2010

Matching cohorts is different from 
matching in case-control studies
- e.g. no need for matched analysis
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Sequential, PS-matched cohorts
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Patient factors
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Physician 
factors

System factors
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On being inpatient

Wanting to have answers quickly may result in 
biased results

Wanting to have answers quickly may result in 
studies with few and highly selected new usersstudies with few and highly selected new users

With few exposed to the new drug fitting a rich PS 
model may be difficult -> Disease risk score?

DRS may be fitted in historical data
 Less representative for the study population
 Combination of PS and DRS with time-varying influence on 

covariate balancing?
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Is there a problem with PS matching?

Fixed ratio matching: transparency versus efficiency
 1:1 or 1:n matching produces nice Table 1’s
 1:n matching will lead to discarding some potential 

matches

Multiple reference groups: new high-dimensionalMultiple reference groups: new high dimensional 
optimal matching algorithm now available

With few exposed to the new drug fitting a rich PS 
model may be difficult -> Disease risk score?

DRS may be fitted in historical data
 Less representative for the study population
 Combination of PS and DRS with time-varying influence on 

covariate balancing?
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Thank you very much

How to demonstrate changes in 
treatment choice  confounding over 
time

Table 1 comparisons
Malhalanobis distance
E pl ined i tion nd omponent of i tion (R2 )Explained variation and components of variation (R2, c)
Propensity score distributions (% overlap, % matched)

21


