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Autism is a heterogeneous group of life-long neurologic problems that begin in childhood. Success in
efforts to understand and treat autism has been mostly elusive. The role of autoimmunity in autism
has gained recognition both for associated systemic autoimmune disease and the presence of brain auto-
antibodies in autistic children and their family members. There is an acknowledged genetic susceptibility
to autism – most notably allotypes of complement C4. C4 defects are associated with several autoim-
mune diseases and also confer susceptibility to mycobacterial infections. Mycobacterium avium ss. para-
tuberculosis (MAP) causes an enteric inflammatory disease in ruminant animals (Johne’s disease) and is
the putative cause of the very similar Crohn’s disease in humans. Humans are widely exposed to MAP
in food and water. MAP has been also linked to ulcerative colitis, irritable bowel syndrome, sarcoidosis,
Blau syndrome, autoimmune (Type 1) diabetes, Hashimoto’s thyroiditis and multiple sclerosis. Environ-
mental agents are thought to trigger autism in the genetically at risk. Molecular mimicry is the proposed
mechanism by which MAP is thought to trigger autoantibodies. Autoantibodies to brain myelin basic
protein (MBP) is a common feature of autism. This article considers the subset of autoimmunity-related
autism patients and postulates that MAP, through molecular mimicry to its heat shock protein HSP65,
triggers autism by stimulating antibodies that cross react with myelin basic protein (MBP).

� 2011 Elsevier Ltd. All rights reserved.
Introduction

Autism is a devastating childhood developmental disorder that
features language impairment, dysfunctional social interactions,
and repetitive behavior patterns [1]. Autism spectrum disorders
(ASD) are a collection of developmental neurobehavioral condi-
tions within the pervasive developmental disorders that include
autistic disorder, Asperger’s disorder, and pervasive developmental
disorder [2]. Autism appears to be on the rise in the United States
[3,4], although some of the factors, including earlier-age diagnosis,
could influence the reported frequency increases [5]. The Centers
for Disease Control and Prevention (CDC) reports that about 1 in
150 children have a form of ASD [6]. It has been suggested that
ASD arise from multiple causal pathways [7] and represent a mul-
ti-system disorder [8]. The current thought is that genetic back-
ground plays a role in autism [9]; and, prenatal and perinatal
environmental factors pose risk and/or trigger the disease
[10–13]. This paper proposes a causal link between infection with
Mycobacterium avium ss. paratuberculosis (MAP) and autism.
ll rights reserved.
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Autism—genetic and environmental factors

Twin studies comparing concordance for autism in identical and
fraternal twins have shown that autism has a genetic component
with significant heritability indices [14]. The average concordance
for identical twins is 64% vs. 9% for fraternal twins [15]. Family
studies reported significant sib recurrence risks in large families;
the latter sib recurrence risk was 8.6%, and for families with two
or more affected children, the recurrence risk approached 35%
[16]. An additional indicator that autism is genetically determined
comes from finding that a comprehensive genetics evaluation can
reveal a chromosomal or Mendelian cause or predisposition in
15–40% of children who fit ASD behavioral diagnostic criteria
[17]. While genetic factors – mutations, deletions, and copy num-
ber variants – are clearly implicated in causation of autism, they
account for a fraction of cases, and do not readily explain key clin-
ical and epidemiological features. The increased prevalence of aut-
ism over the last 20 years and the incomplete concordance for
autism in MZ twins has prompted the search for environmental
triggers of autism [18].

The most powerful proof-of-concept evidence of environmental
triggers comes from studies specifically linking autism to expo-
sures in early pregnancy – thalidomide, misoprostol, and valproic
acid; maternal rubella infection; and the organophosphate insecti-
cide, chlorpyrifos [19]. Most notable of suspected environmental
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agents was thimerosal. Thimerosal, a preservative used in a num-
ber of childhood vaccines and the measles–mumps–rubella vac-
cine have been the major targets of interest. The original studies
by Wakefield [20,21] that suggested an association between
immunizations and autism have been disproved with the work re-
tracted by The Lancet [22]. Although parental concern is still signif-
icant, multiple studies and lines of scientific evidence have
identified no support for a relationship between immunizations
and autism [23–26]. A tragedy resulting from fear of an autism epi-
demic has been the decreased use of childhood immunizations
leading to outbreaks of measles and childhood deaths [27,28].
Autoimmunity and autism

The connection between autoimmunity and ASD was first rec-
ognized by Money [29]. Children with ASD were found to be more
likely to have a family member with an autoimmune disease than
normal controls. Immune dysfunction is a common occurrence
among cases of autism and ASDs [30–34]. Hertz-Picciotto [35]
noted the probable relationship between autism and the immune
dysfunction associated with autism. The presence of brain autoan-
tibodies in a significant number of autistic children [36–40] sug-
gests the pathogenic role of autoimmunity in those autistic
patients. This is true not just for children with autism, but also
for their family members [41].
C4 allotypes-shared susceptibility to autism, autoimmune
disease and mycobacterial infection

Complement component C4 is an important protein of the clas-
sical pathway of complement activation. C4 plays an important
role in innate defense against microbes and, as such, it is an ad-
junct or ‘‘complement’’ to humoral immunity [42–44]. The fre-
quency of C4B null allele is significantly higher in autistic
children. In addition, a family history of autoimmunity imparts a
significant risk for association with C4B null allele in autistic chil-
dren [45–46].

Increased prevalence of C4 null alleles is a common feature of
autoimmune diseases [47–50]. The shared association of C4B null
allele with both autoimmune disease and autism suggests that
autoimmunity has a role in autism [51]. Additionally, complement
C4 defects increase susceptibility to mycobacterial infections of
Mycobacterium leprae, Mycobacterium tuberculosis and Mycobacte-
rium avium [52–54].
Mycobacterium avium ss. paratuberculosis (MAP)

MAP is a gram-positive, acid-fast staining small rod-shaped
bacterium. The thick and chemically distinctive cell wall of myco-
bacteria is responsible in large measure for the robust nature of
these bacteria. With the exception of M. leprae (the cause of leprosy
in humans), which cannot be cultured in vitro, MAP has the slow-
est growth rate of pathogenic mycobacteria. After isolation from
infected animals and grown under optimal conditions colonies of
MAP are typically not visible for 3 months or more [55].

MAP causes a chronic granulomatous inflammation of the intes-
tines in ruminant animals called Johne’s disease. Mostly studied in
dairy cattle, goats and sheep, MAP also causes Johne’s disease in a
wide variety of other domestic and wild ruminants. MAP-induced
enteric inflammation has been found in monogastric animals
including dogs and pigs as well as four different types of subhuman
primates – macaques, baboons, gibbons and cotton-top tamarins’’
[56]. A majority of the dairy herds in the United States and Europe
have Johne’s infected animals within the herd [57].
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MAP and human exposure

MAP is present in pasteurized milk [58,59], infant formula made
from pasteurized milk [60] surface water [61–63], soil [61], cow
manure ‘‘lagoons’’ that can leach into surface water, cow manure
in both solid and liquid forms that is applied as fertilizer to agricul-
tural land [64], and municipal tap water [55], providing multiple
routes of transmission to humans. In a recent study in Ohio the
DNA of MAP was detected in over 80% of domestic water samples
[65].

Normal water treatment processes such as filtration and chlori-
nation enables mycobacteria organisms by killing off their compet-
itors [66]. Mycobacteria organisms grow on tap water pipes [67] in
biofilms [68] and on plastic water bottles [69].
MAP and human disease

In addition to Johne’s disease of animals, MAP is the putative
cause of the striking similar Crohn’s disease of humans. Although
there has been a century-long debate, the role of MAP in Crohn’s
has evolved from controversial to compelling [70–72]. The major
source of the debate is that conventional methods of detecting bac-
teria – namely, culture and stain – are largely ineffective in detect-
ing MAP. However, with newer laboratory techniques, primarily
PCR, evidence of MAP is readily found in Crohn’s tissues [73,74];
it can be visualized within the granulomas by in situ hybridization
[75]: and, with extreme care and patience, MAP can be grown from
the gut and blood of Crohn’s patients [76–78].

MAP is the suspected cause of the whole spectrum of inflamma-
tory bowel disease – Crohn’s, ulcerative colitis and irritable bowel
syndrome [79–80]. Irritable bowel syndrome is a widespread
abdominal condition that affects about 10–15% of people in the
industrialized economies of Europe, North America, Australasia,
and Japan, with a rising prevalence among the populations in the
developing economies of Asia. Some consider irritable bowel syn-
drome a form fruste of Crohn’s disease [81].

MAP has also historically been linked to sarcoidosis [82]. More
recently, MAP has been associated with autoimmune (Type 1) dia-
betes [83,84], autoimmune thyroiditis [85,86], Blau syndrome [87]
and multiple sclerosis [88]. While it may be intuitive to envision an
occult presence of MAP as an infective agent producing a granu-
lomatous lesion of Crohn’s or sarcoidosis; it is broader divide to as-
sign a role for MAP in autoimmune diabetes, thyroiditis and
autism. The proposed link connecting MAP and these diseases
comes from the concept of molecular mimicry: protein elements
of the pathogen share sequence and/or conformational elements
of the host to a degree that immune responses directed at the path-
ogen also attack the host.
Mimicry/heat shock proteins – HSP65

Molecular mimicry has long been implicated as a mechanism by
which microbes can induce autoimmunity [89,90].

Heat shock proteins (HSPs) are produced in response to environ-
mental stress. They act in a protective capacity helping cells survive
stressful conditions and promoting recovery [91]. Mycobacterial
HSPs have been found in a several autoimmune diseases [92]. For
example, the mycobacterial 65 kDa HSP has been implicated in
the pathogenesis of rheumatoid arthritis [93–95] autoimmune hep-
atitis [96], primary biliary cirrhosis [97] and scleroderma [98].
HSP65 is implicated in multiple vasculitis-associated systemic
autoimmune diseases such as Kawasaki disease [99], Behcet’s dis-
ease [100] and Takayasu’s arteritis [101] and Type 1 diabetes [102].

Individuals at-risk for T1DM produce anti-GAD antibodies.
HSP65 was first associated with T1DM via GAD in 1990 [102].
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http://dx.doi.org/10.1016/j.mehy.2011.08.024
http://dx.doi.org/10.1016/j.mehy.2011.08.024


C.T. Dow / Medical Hypotheses xxx (2011) xxx–xxx 3
Mycobacteria produce HSP65 in response to stress. Epitope homol-
ogy between mycobacterial HSP65 and pancreatic glutamic acid
decarboxylase (GAD) likely triggers the anti-GAD antibodies that
secondarily destroy the pancreas [103]. It has been proposed that
MAP provides the mycobacterial HSP65 [104].
Mycobacterial HSP65 and anti-brain myelin basic protein

There are behavioral and neurologic diseases that are driven by
autoantibodies. Microbial-prompted molecular mimicry occurs in
group A streptococcus when antibodies cross-react with host neu-
ral elements and produce the neuropsychiatric and movement dis-
orders of Sydenham chorea. Additionally, pediatric autoimmune
neuropsychiatric disorder associated with streptococcal infection
(PANDAS) is a new, but well characterized, obsessive–compulsive
disorder also due to antibody-directed neurologic-targeted auto-
immune inflammation [105]. Autoimmunity to brain antigens is
a common feature of autism. Of all brain autoantibodies, the most
prevalent is that to CNS myelin-derived myelin basic protein (MBP)
[106,107].

A major characteristic of autoimmune diseases is an infiltration
of mononuclear cells into tissues that otherwise exhibit a paucity
of immune cell types. Under normal circumstances, T cells confer
immunity by the specific recognition of foreign antigen. Autoim-
munity occurs when these T cells also target host tissue that has
epitope homology with the foreign antigen. Such is the case with
homology between mycobacterial HSP65 (aa3-13) and MBP
(aa84-102) [108]. The homology between these proteins is the crux
of this article.
Vitamin D and autism

Vitamin D deficiency has become a major health concern where
topical sunblock and indoor activities have limited sun exposure
for children and dietary sources cannot make up the difference.
Vitamin D is a potent modulator of the immune system. There is
a recognized contribution of vitamin D deficiency to the develop-
ment of autoimmune diseases. Epidemiological studies present
evidence linking vitamin D deficiency with autoimmune diseases,
such as rheumatoid arthritis, systemic sclerosis and systemic lupus
erythematosus [109–111].

Vitamin D deficiency is also postulated to have a role in autism
[112]. Case-controlled cross-sectional study clearly shows that cir-
culating vitamin D levels are significantly lower in children with
autism than in healthy controls suggests that vitamin D insuffi-
ciency may play a role in the etiology of autism [113].

Vitamin D also has a role in fighting mycobacterial infection.
Niels Ryberg Finsen was awarded the Nobel Prize in 1903 for the
treatment of mycobacterium infections with UV-B light [114].
There have been several studies looking at various doses of vitamin
D in treatment of mycobacteria. Sun exposure results in the pro-
duction of 10–20 000 IU of vitamin D in a relatively short period
of time [115]. In a series studying individuals with tuberculosis,
the use of 10 000 IU of vitamin D3 daily in addition to the antibi-
otics resulted in 100% sputum conversion rates as compared 77%
in those using the antibiotics alone of Mycobacterium tuberculosis
[116]. The mechanism for this remained unclear until the publica-
tion of a study by Liu et al. showing that the vitamin D-induced
anti-mycobacterial affect is dependent upon the induction of cath-
elicidin [117].

The striking male:female ratio (4:1) known with autism may be
explained by vitamin D.

Estrogen and testosterone appear to have markedly different ef-
fects on vitamin D metabolism. Studies have found a positive effect
of estrogen on calcitriol levels [118] but not so with testosterone. If
Please cite this article in press as: Dow CT. Mycobacterium paratuberculos
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estrogen increases calcitriol, but testosterone does not; such differ-
ences may mean that estrogen shields females from calcitriol defi-
ciencies, while testosterone does not for males.
Summary

Although autism was first described more than 60 years ago by
American psychiatrist Leo Kanner, autism still remains poorly
understood [119]. This article postulates a parsimonious pathway
linking autism to MAP. Innate immune dysfunction of C4 allotypes
– associated with autism – allows for mycobacterial infection
(MAP). The persistent presence of MAP results in its production
of mycobacterial HSP65, the response to HSP65 results in periphe-
ral blood autoantibodies to myelin basic protein, MBP. The inflam-
mation associated with anti-MBP antibodies may cause the
language, social and behavioral patterns of autism.
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